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Abstract

This paper uses formal asymptotic analysis to study the properties of traveling cell solutions
of a one-dimensional cell motility model proposed by Mogilner and Verzi (2003). In an earlier
paper (Choi, Lee and Lui, 2004), it was proved that Mogilner-Verzi’s model admits traveling
cell solutions that have a constant length and move with a constant speed. In this paper,
we derive asymptotic formulas for the length and speed of the traveling cell. In addition,
under the assumption that the length density of bundled filaments is large compared to the
magnitudes of the other parameters in the model, we show that the traveling cell is linearly
asymptotically stable.

1 Introduction

The movement of cells along surfaces is an important biological process that has been studied by
the biologists for decades. Proper understanding of cell movement has many important applications
such as in the study of metastasis of cancer cells, wound healing by skin cells, and locomotion of
white blood cells responsible for proper functioning of the immune system. For the past thirty years,
many mathematical models have been developed to describe certain aspects of cell movement such
as protrusion at the front (Mogilner and Oster, 1996) or cell-substratum adhesions (Dembo et al.,
1981; DiMilla et al., 1991). More recently, several mathematical models that describe the movement
of an entire cell have been developed (Bottino and Fauci, 1998; Bottino et al., 2002; Gracheva and
Othmer, 2004; Mogilner et al., 2001; Mogilner and Verzi, 2003; Rubinstein, Jacobson and Mogilner,
to appear). One such model is by Mogilner and Verzi (2003) which describes the crawling movement
of a nematode sperm cell on a surface. Nematode sperm cell is MSP (major sperm protein) based
and lacks motor protein and hence their movement is easier to model than actin-based cells. Using
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mass balance, Mogilner and Verzi proposed the following system of equations for their model:




∂b

∂t
= − ∂

∂x
(bv)− γbb ,

∂p

∂t
= − ∂

∂x
(pv) + γbb− γpp ,

∂c

∂t
= − ∂

∂x
(cv) .

(1.1)

In the above system, b, p denote the length densities of the bundled filaments and free filaments
inside the cell, respectively, c is the density of the cytoskeletal nodes, v is the velocity of the cell,
γb = γb(y) is the rate of unbundling of the bundled filaments, γp = γp(y) is the rate of disassembly
of the free filaments, and y is the distance between x and the rear of the cell. See Mogilner and
Verzi (2003) for a detail description of the model.

System (1.1) is assumed to hold between r(t) and f(t), which are the rear and front ends of the
cell at time t, respectively. Hence, y = x− r(t) in (1.1). Mogilner and Verzi (2003) assumed that

v(x, t) =
1

ξ

∂σ

∂x
(1.2)

where σ is the stress in the cell and ξ = ξ(y) is the effective drag coefficient between the cell and
the substratum. In their paper, they assume that σ is of the form

σ = Kb

(
1

c
− ρ

)
+ κ

p

c
(1.3)

where K and κ are the effective spring constants for the bundled and free filaments, respectively,
ρ is the rest length of the bundled filaments and the free filaments are assumed to have natural
length 0. Formula (1.3) is based on Hooke’s law and represents the sum of the forces created by
the bundled and free filaments which are mounted between two cytoskeletal nodes whose average
distance apart is 1/c.

The boundary conditions for (1.1) are as follow. There is no stress at the front and rear so that
σ = 0 on r(t) and f(t). Also, at the front, there is no free filament (p = 0) and the amount of
bundled filaments is known (b = b0). From (1.3), c = 1/ρ at the front. Therefore, the boundary
conditions at the front are:

σ = 0 , b = b0 , p = 0 , and c =
1

ρ
. (1.4)

The boundary condition at the back is simply σ = 0.
The front and rear ends of the cell constitute the moving boundaries and need to be solved

together with (1.1). Mogilner and Verzi (2003) assumed that the front and back movements are
governed by the equations 




df

dt
= Vp |f(t) + v |f(t) ,

dr

dt
= Vd + v |r(t)

(1.5)
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where

Vp = V0

[
0.5 +

1

π
arctan(η(y − L))

]
L

f(t)− r(t)
(1.6)

is the rate of MSP polymerization at the front and Vd > 0 is the prescribed rate of disassembly of
the free filaments at the rear. The exact form of Vp in (1.6) is not important. What is important is
the fact that Vp is inversely proportional to the size of the cell so that polymerization is more rapid
for smaller cells. We assume that initially the cell is of size `0 and, without loss of generality, we
may assume that it lies on the interval [0, `0] so that r(0) = 0 and f(0) = `0. Choi, Groulx and Lui
(2004) proved that if γp = 0 in (1.1), K = κ in (1.3) and the initial data satisfy some compatibility
conditions which we shall not detail here, then there exists τ > 0 such that the Mogilner-Verzi
model admits a unique solution for 0 ≤ t < τ . Suppose further that the initial data satisfy the
condition σ +ρKb = ρKb0, then it can be shown by the method of characteristics that this relation
also holds inside the cell for all t > 0. From (1.3), ξv = −ρKbx. System (1.1) and the boundary
conditions (1.4), σ(r, t) = 0 may be reduced to the following problem on b:





bt = ρK

(
b bx

ξ

)

x

− γbb ,

b(r, t) = b0, b(f, t) = b0 .

(1.7)

Global existence of this moving boundary problem has been proved by Choi, Groulx and Lui (2004).

Remark: The above condition on the initial data may not always be necessary. Let w = K(b+p)/c.
From system (1.1), w satisfies the hyperbolic equation wt + vwx = 0. Let Γ be the characteristic of
the above hyperbolic equation starting from the point (t, x) = (0, `0). Suppose Γ intersects the rear
r(t) at some time T > 0. Then since w = ρKb0 on the front and w is constant along characteristics,
w = ρKb0 in the region inside the cell above Γ. Hence, the assumption on the initial data is
unnecessary if Γ intersects the rear and if we consider the solution for t ≥ T .

For the rest of this paper, we shall focus on the simpler model (1.7). Using asymptotic analysis,
we derive simple and explicit formulas for the speed and length of the traveling cell solution. Under
the assumption that b0 is large, we also show that the traveling cell solution is linearly asymptotically
stable.

2 Traveling Cell Solutions

Traveling cell solutions are special solutions of the form b(x, t) = b̃(x− kt). Biologically, this means
that the cell maintains a constant shape and moves with a constant velocity k. Substituting this
form of solution into (1.7), we have

ρK

[
b̃ b̃′

ξ

]′
+ kb̃′ − γbb̃ = 0 (2.1)

where ′ = d/dy. If the cell is of length ` and moves with a velocity k, then the back of the cell is
located at r(t) = kt and the front is located at f(t) = kt + ` so that

b̃(0) = b0, b̃(`) = b0 . (2.2)
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System (1.5) becomes 



k = Vp(`)− ρK
b̃x(`)

ξ(`)
,

k = Vd − ρK
b̃x(0)

ξ(0)
.

(2.3)

The existence of traveling cell solution is to find constants k, `, and function b̃ defined on [0, `] such
that equations (2.1), (2.2) and (2.3) are satisfied. It was shown in Choi, Lee and Lui (2004) that
under the hypotheses

(HA) There exists `∗ > 0 such that
(a) Vp(`

∗) = Vd,
(b) Vp : (0, `∗] → (0,∞) is a C1 function,
(c) Vp(`) →∞ as ` → 0+,
(d) Vp(`) > Vd for all ` ∈ (0, `∗) and
(e) V ′

p(`
∗) < 0,

and

(HB) There exist positive constants γ0, γ1, ξ0, ξ1 such that
(a) ξ, γb ∈ C1[0, `∗],
(b) γ0 ≤ γb(y) ≤ γ1,
(c) ξ0 ≤ ξ(y) ≤ ξ1,

there exists a traveling cell solution with speed k and length `. Furthermore, if Vp is decreasing on
(0, `∗) and ξ and γb are constants, then the traveling cell solution is unique. These results are special
cases of more general theorems proved in Choi, Lee and Lui (2004) where K 6= κ was allowed and
only the assumption γp = 0 was made. In Choi and Lui (2004), traveling cell solution was shown
to exist assuming that γb and γp are constants but γp is not necessarily zero.

The following is the graph of the traveling cell solution b̃ obtained from solving equations (2.1),
(2.2) and (2.3) using the dimensional parameter values given in Table II of Molginer and Verzi (2003).
In particular, b0 = 500 µm/µm, K = κ = 1 pN/µm, V0 = 3.2 µm/s, ρ = 1 µm, Vd = 1.25 µm/s, and
γb = 0.175/s. The drag coefficient was assumed to be of the form

ξ(y) = αξ +
2βξ

π
arctan(η(y − Lc)) (2.4)

where Lc = 11 µm is the length of the cell body, αξ = 70 pN · s/µm2, βξ = 50 pN · s/µm2 and
η = 1/µm. We found that k ≈ 1.31959 µm/s and ` ≈ 0.78806 µm. Also, `∗, defined in (HA), is
approximately .8831. Note that b0 is much larger in value than the other parameters. If we let
b0 ↓ 0, then a boundary layer begins to develop near x = 0. Figure 2 shows the graph of b̃ when
b0 = 1 with the same set of parameter values except for b0. We found that k ≈ 1.38019 µm/s and
` ≈ 0.79168 µm. These values do not seem to vary a lot with b0.
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Figure 1. Graph of length density of bundled polymer b with b_0 = 500.
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Figure 2. Graph of length density of bundled polymer b with b_0 = 1.

3 Asymptotic Analysis for Large b0

In this section, we shall derive formulas for k and ` assuming that b0 is large compared to the
magnitudes of the other parameters in the model. We first scale the domain [0, `] to [0, 1] by
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defining x = y/` and letting b̃(x) = b(`x). Then (2.1) becomes





1

`
2

(
b̃ b̃′

ξ

)′

+
k

Kρ`
b̃′ − γb

Kρ
b̃ = 0 ,

b̃(0) = b0, b̃(1) = b0 .

(3.1)

If we examine figure 1, we see that b is roughly a constant. Therefore, we assume that b0 = 1/ε
where 0 < ε << 1, and that b̃ has the formal asymptotic expansion

b̃(x) =
1

ε
+ g(x) + εg1(x) + . . . (3.2)

where we have replaced x by x for simplicity in notation. Substituting this into (3.1) and comparing
the 1/ε terms, we have

1

`
2

{
g′(x)

ξ(`x)

}′
− γb

Kρ
= 0 .

Strictly speaking we should also employ the expansions ` = `0 + ε`1 + ... and k = k0 + εk1 + .... in
the above calculation. The ` in the above equation is in fact `0. However this will complicate our
notation and since we are interested only in the leading order effect, we shall use ` for both ` and
its leading order expansion `0. A similar remark applies for k.

Since g(0) = g(1) = 0, integrating the above equation, we have

g(x) =
`
2

Kρ

∫ x

0

ξ(`τ) dτ

∫ τ

0

γb(`t)dt− C1

∫ x

0

ξ(`t) dt

where

C1 =

`
2
∫ 1

0

ξ(`τ)dτ

∫ τ

0

γb(`t)dt

Kρ

∫ 1

0

ξ(`t) dt

.

System (2.3) becomes 



k = Vp(`)− Kρb̃x(1)

` ξ(`)
,

k = Vd − Kρb̃x(0)

` ξ(0)
.

(3.3)

From (3.2), we have 



b̃x(0) = −C1ξ(0) ,

b̃x(1) =

(
`
2

Kρ

∫ 1

0

γb(`t)dt− C1

)
ξ(`) .

(3.4)
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Substituting these back into (3.3) and eliminating k, we obtain, to leading order, our basic equation

`

∫ 1

0

γb(`t)dt− Vp(`) + Vd = 0 . (3.5)

From hypotheses (HA), the left side of (3.5) approaches −∞ as ` ↓ 0 and is positive at `∗.
Therefore, (3.5) has a solution ` ∈ (0, `∗). Furthermore, if Vp is decreasing, this solution is unique
(?). If we use the parameter values given near the end of last section and find the root of the
above equation, we obtain ` = 0.78803 which is almost identical to ` = 0.78806 obtained from using
shooting argument to find the traveling cell solution.

Once ` is determined, the wave speed k may be obtained from either of the equations in (3.3).
It is clear from the formula for C1 that b̃x(0) < 0 and b̃x(1) > 0 so that Vd < k < Vp(`), which has
already been proved in Choi, Lee and Lui (2004). Explicitly, to leading order,

k = Vd +

`

∫ 1

0

ξ(`τ)dτ

∫ τ

0

γb(`t)dt

∫ 1

0

ξ(`t) dt

. (3.6)

We have the following conclusions. Equation (3.5) says that to leading order the cell length
is that value for which the rate of polymerization at the front is equal to the sum of the rate
of disassembly of the free filaments at the rear and the total depolymerization of the bundled
filaments throughout the cell. This length is independent of ρ, K and the drag coefficient ξ. While
the traveling cell speed is also independent ρ and K, it is clear from (3.6) that k is independent of
ξ only when the drag coefficient is a constant. Interchanging the order of integration, we can write
(3.6) as

k = Vd +

`

∫ 1

0

γb(`t)dt

∫ 1

t

ξ(`τ)dτ

∫ 1

0

ξ(`t) dt

. (3.7)

If ξ(x) = ξ0δ(x) where δ(x) is the dirac delta function concentrated at the origin and ξ0 is a positive
constant, i.e. friction is concentrated at the rear, then (3.7) gives k = Vd. On the other hand, when
there is no friction except at the front, i.e. ξ = ξ0δ(x− `), it can readily be checked using (3.7) and
(3.5) that k = Vp(`). Such results reconcile with our intuition.

When γb is a constant, (3.6) becomes

k = Vd + γb

∫ `

0

xξ(x) dx

∫ `

0

ξ(x) dx

= Vd + γb`c , (3.8)

where `c is the center of mass for the function ξ on the interval [0, `]. Therefore, greater frictional
force at the front produces a faster moving cell.
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4 Asymptotic Analysis for Small b0

In case b0 is very small, figure 2 suggests that a boundary layer is formed near the rear of the cell. In
this section we derive formulas for k and ` for small b0 using inner and outer expansion techniques.

Consider equations (2.1), (2.2) and (2.3) in §2. A boundary layer develops near the rear as b0 ↓ 0
since the convection velocity k is in the negative x−direction and its magnitude is large compared
to the diffusion coefficient ρKb/ξ. Let us first consider the outer expansion. Assume that b has the
formal asymptotic expansion

b = εu(x) + ε2u1(x) + .... for x bounded away from zero. (4.1)

Substituting (4.1) into (2.1) and comparing coefficients of the O(ε) terms, we have

ku′ − γbu = 0 (4.2)

with boundary condition u(`) = 1. This gives the outer solution

u(x) = exp

(
−1

k

∫ `

x

γb(t) dt

)
. (4.3)

Inside the boundary layer, we let X = x/ε and assume that the inner solution of b has an
expansion of the form

b = εU(X) + ε2U1(X) + .... for x close to 0 (4.4)

where U(X) = U(x/ε) = u(x). Substituting this into (2.1) and comparing the coefficients of the
O(ε) terms, we have

ρK

ξ(0)
(UU ′)′ + kU ′ = 0 . (4.5)

where ′ = d/dX. Integrating, we have

ρK

ξ(0)
U ′ =

C1

U
− k (4.6)

where C1 is a constant to be determined. Since b(0) = b0 = ε, (4.4) implies that U(0) = 1. It is
also clear from (4.6) that U > 0. Integrating (4.6), we have

ξ(0)

ρK
X + C2 = −U

k
− C1

k
2 log |kU − C1| . (4.7)

Since U(0) = 1, we have

C2 = −1

k
− C1

k
2 log |k − C1| . (4.8)

For the inner and outer expansion to match, we need limX→∞ U(X) = limx→0 u(x), i.e.,

lim
X→∞

U(X) = exp

(
−1

k

∫ `

0

γb(t) dt

)
.
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From (4.7), U approaches the constant C1/k as X →∞ which implies that

C1 = k exp

(
−1

k

∫ `

0

γb(t) dt

)
. (4.9)

Thus C1 < k and U is a decreasing function of X on the interval [0,∞) according to (4.6). Since
the outer solution u(x) is increasing on (0, 1), we have

min
0≤x≤`

b = b0 exp

(
−1

k

∫ `

0

γb(t) dt

)
. (4.10)

Moreover bx(0) < 0 and bx(1) > 0 so that (2.3) implies that Vd < k < Vp(`).
Having determined C1 and C2, the asymptotic solution is completely known provided that k

and ` can be computed. Since bx(`) = εux(`), which is O(ε), (2.3a) gives k = Vp(`) to leading order.
From (4.6), bx(0) = UX(0) = (C1 − k)ξ(0)/ρK and (2.3b) implies that k = Vd − (C1 − k). Thus,
the traveling speed k and cell length ` may be calculated from





k = Vp(`) ,

Vd = k exp

(
−1

k

∫ `

0

γb(t) dt

) (4.11)

if b0 << 1. It is clear that both k and ` are independent of ρ, K and the function ξ. Eliminating k
from the above equations, ` satisfies the equation

Vp(`) exp

(
− 1

Vp(`)

∫ `

0

γb(t) dt

)
− Vd = 0 . (4.12)

Let the left side of (4.12) be denoted by h(`). Then (HA)(c) implies that lim`↓0 h(`) > 0. On the

other hand, (HA)(a) implies that h(`∗) < 0. Hence, equation (4.12) has a root ` ∈ (0, `∗). If Vp

is a decreasing function, it can be easily checked that h′ < 0 and hence this root is unique. Once
we have found `, we can compute k from either of the equations (4.11). As an example, consider
the data set given near the end of §2 with b0 = 1. Using Matlab to solve equation (4.12), we
obtain ` ≈ 0.79177µm and k ≈ 1.38184 µm/s. We recall from section 2 that ` ≈ 0.79168 µm and
k ≈ 1.38019 µm/s from the traveling cell solution. From (4.10), the minimum of b is approximately
0.9046 µm/µm which is roughly what figure 2 shows.

5 Linearized Stability

As mentioned in §1, global existence of the moving boundary problem (1.7) and (1.5) has been
proved by Choi, Groulx and Lui (2004). In this section, we shall present a formal argument that
the traveling cell solution is linearly asymptotically stable if b0 >> 1. We shall assume that ξ is a
positive constant for otherwise the algebra will become very involved. To prove linearized stability,
one must first straighten out the moving boundaries, derive the linearized system and then show that
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the eigenvalues of the linearized system have negative real parts. The derivation of the linearized
system is very technical and we only document the results here.

Let ξ = ξ0 > 0 and let u = b − b̃, ζ1 = ` − ` where b̃ is the traveling cell solution described in
§2. Then the linearized system is





ut = Lu− p(x)ζ1 − E1u

ζ ′1 =

[
V ′

p(`) +
Vp(`)− Vd

`

]
ζ1 + E2u

(5.1)

where





Lu =
ρK

`
2
ξ0

(
b̃u

)
xx

+
k

`
ux − γb u

p(x) =
2

`
(γbb̃)− Vdb̃x

`
2 − xb̃x

`
A`

A` =

[
V ′

p(`) +
Vp(`)− Vd

`

]

E1u =
ρKb̃x

`
2
ξ0

[xux(1) + (1− x)ux(0)] and

E2u =
ρK

ξ0

(
ux(0, t)− ux(1, t)

`

)
.

(5.2)

Let u(x, t) = φ(x)eλt and ζ1(t) = ceλt, then (5.1) becomes





Lφ− p(x)c− E1φ = λφ

A`c + E2φ = λ c
(5.3)

We now show that under the assumption (3.2), the leading order of any eigenvalue λ of (5.3) is real
and negative. We can actually derive a formula for the leading order term that agrees well with the
numerical solutions of (5.3).

Let

b̃ =
1

ε
+ g + εg1 + . . .

λ =
1

ε
λ−1 + λ0 + ελ1 + . . .

φ =
1

ε
φ−1 + φ0 + εφ1 + . . . .
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There are three cases to consider:

Case 1: c = 0.
System (5.3) becomes





ρK

`
2
ξ0

(b̃φ)xx +
k

`
φx − γbφ− ρKb̃x

`
2
ξ0

[xφx(1) + (1− x)φx(0)] = λφ

E2φ = 0 .

Looking at the 1/ε2 term, we have

ρK

`
2
ξ0

(φ−1)xx = λ−1φ−1 .

Together with the boundary conditions φ(0) = φ(1) = 0, this gives λ−1 = −ρKn2π2/ξ0`
2

and
φ−1(x) = An sin(nπx) for some An 6= 0, n = 1, 2, 3, . . .. The condition E2φ−1 = 0 reduces to
nπAn [1− (−1)n] = 0 which can only be satisfied if n is even.

Case 2: c 6= 0, λ−1 6= 0
We can divide the two equations in (5.3) by c and let ψ = φ/c. System (5.3) becomes





ρK

`
2
ξ0

(b̃ψ)xx +
k

`
ψx − γbψ − ρKb̃x

`
2
ξ0

[xψx(1) + (1− x)ψx(0)]− p(x) = λψ

E2ψ + A` = λ .

Comparing the 1/ε2 term in the first equation and 1/ε term in the second equation, we have





ρK

`
2
ξ0

(ψ−1)xx = λ−1ψ−1

E2ψ−1 = λ−1 .

Proceeding as before, we have λ−1 = −ρKn2π2/ξ0`
2

and ψ−1 = An sin(nπx) for some An, n =
1, 2, 3, . . ... The second equation above becomes

An
ρK

ξ0

nπ

`
[1− (−1)n] = −ρKn2π2

ξ0`
2

which can be satisfied only if n is odd. The magnitude of An is fixed in this case since we have
already normalized the eigenfunction (φ, c) so that c = 1.

Case 3: c 6= 0, λ−1 = 0 .

11



For this case ψ−1 = 0 so that we have





ρK

`
2
ξ0

(ψ0)xx − 2γb

`
= 0

E2ψ0 + A` = λ0 ,

where γb = γb(`x). With boundary conditions ψ0(0) = ψ0(1) = 0, the first equation yields

ψ0(x) =
2ξ0`

ρK

∫ x

0

(x− t)γb(`t) dt− 2ξ0`x

ρK

∫ 1

0

(1− t)γb(`t) dt .

The second equation then gives λ0 = −2
∫ 1

0
γb(`t) dt + A`. Since ` satisfies (3.5), we have λ0 =

V ′
p(`)−

∫ 1

0
γb(`t) dt.

Summary: Let b0 = 1/ε. Then, to leading order, the eigenvalues of (5.3) are





λ = −ρKb0n
2π2

ξ0`
2 , n = 1, 2, 3, . . .

λ = V ′
p(`)−

∫ 1

0

γb(`t) dt .

(5.4)

A necessary and sufficient condition for the traveling cell solution to be linearly asymptotically
stable is

V ′
p(`) <

∫ 1

0

γb(`t) dt . (5.5)

In particular, if Vp is a decreasing function of `, then (5.5) always holds and the traveling cell
solution is linearly asymptotically stable.

Table 1 compares the relative errors between the 12 largest eigenvalues obtained from numer-
ically solving equation (5.3) and using the above formula. The numerical calculation was done
by discretizing the interval [0, 1] into 1000 equal parts and calling the Matlab function eig to find
the eigenvalues of the resulting matrix. The traveling cell solution b̃ was obtained by a shooting
argument using the set of dimensional parameter values found in Table 2 of the paper Molginer and
Verzi (2003). Note that the largest eigenvalue, given by (5.4b) is significantly larger than the rest
of the eigenvalues. Relative errors are calculated using the formula |(a− b)/b| × 100 where b is the
value obtained from (5.4). The numerical calculations are inaccurate for large eigenvalues but the
largest 100 eigenvalues all have relative error less than 1%.

6 Summary and Discussion

Many cells possess the ability to crawl over surfaces and it is well known that cell movement
is important for the proper functioning of many physiological processes. Although recently many
mathematical models have been developed to model the movement of a single cell (see the references
given in §1), very few of these models have been rigorously analyzed. This paper is an attempt to
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Table 1: Comparison of 12 largest eigenvalues

Using (5.4) Solving (5.3) numerically Relative Error
-41807.697120 -41749.583857 0.139001
-34551.815801 -34504.205390 0.137794
-27986.970799 -27948.659114 0.136891
-22113.162113 -22082.983561 0.136473
-16930.389743 -16907.269524 0.136560
-12438.653688 -12421.525704 0.137700
-8637.953950 -8625.854456 0.140074
-5528.290528 -5520.212489 0.146122
-3109.663422 -3104.763214 0.157580
-1382.072632 -1379.315927 0.199462
-345.518158 -344.655110 0.249784

-1.800790 -1.803155 0.131375

study one of these models using formal asymptotic analysis. The model we chose to analyze was
proposed by Mogilner and Verzi in 2003 to describe the movement of a nematode sperm cell, Ascaris
suum. Most animal cells are actin based. One of the main differences between a nematode sperm
cell and an actin based cell is that the former lacks motor protein (myosin) which is responsible for
the contraction at the rear of an actin based cell. Molginer and Verzi (2003) models the contraction
at the rear by the disassembly and unbundling of the free filaments which releases energy, causes
contraction at the rear, and thus pulls the cell body forward. Although most animal cells are actin-
based, a mathematically consistent model describing the crawling motion of an actin-based cell is,
to the best of our knowledge, still forthcoming. Mathematically consistent here means that the
model should at least be shown to have a solution locally in time.

Molginer and Verzi’s model is mathematically consistent and gives rise to a moving boundary
problem. It was shown by Choi, Lee and Lui (2004) that under some assumptions, traveling cell
solutions exist for this model. A traveling cell has a cell length and a velocity, and it is important
to know how these two quantities depend on the parameters of the model. Using formal asymptotic
analysis, we derived formulas for the cell length and velocity of the traveling cell when the length
density of the bundled filaments (b0) at the front is very large and very small. The two curves
shown in Figure 1 are produced by the same set of data as in Molginer and Verzi (2003) using
these formulas. The upper curve is produced by formulas (4.12) and (4.11a) while the lower curve
is produced by formulas (3.5) and (3.8) with the rate of unbundling (γb) ranging between 0.1/s and
2.0/s. Note that the curves are relatively close to each other considering the fact that b0 is near
zero in one case and near infinity in the other.
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Fig. 1. Graphs of ` versus k for small and large b0 with varying γb.

After establishing a traveling cell solution exists, one would like to know if such a solution is
stable. Proving the stability of traveling wave solution is mathematically very challenging and there
is a large amount of literature devoted to it. The starting point of the proof is usually to study
the spectrum of the linear operator obtained by linearizing the evolution equation or system about
the traveling wave. For our model, we are able to derive asymptotic formulas for the eigenvalues
of the linearized operator for b0 very large. These eigenvalues are all real and agree well with those
obtained by numerical simulation. Since the traveling cell solution develops a boundary layer as
b0 ↓ 0, we are unable to compute the eigenvalues when b0 is near zero. However, we conjecture
that all the eigenvalues of (5.3) are real and so far we are able to prove that any real eigenvalue of
(5.3) must be negative so that our conjecture would imply that the traveling cell solution is linearly
asymptotically stable. The conjecture is difficult to prove since (5.3) is a non-selfadjoint, nonlocal
system.

Acknowledgement Patrick Groulx if deem appropriate.
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